Proton-coupled electron transfer in a model for tyrosine oxidation in photosystem II.
نویسندگان
چکیده
Theoretical calculations of a model for tyrosine oxidation in photosystem II are presented. In this model system, an electron is transferred to ruthenium from tyrosine, which is concurrently deprotonated. This investigation is motivated by experimental measurements of the dependence of the rates on pH and temperature (Sjödin et al. J. Am. Chem. Soc. 2000, 122, 3932). The mechanism is proton-coupled electron transfer (PCET) at pH < 10 when the tyrosine is initially protonated and is single electron transfer (ET) for pH > 10 when the tyrosine is initially deprotonated. The PCET rate increases monotonically with pH, whereas the single ET rate is independent of pH and is 2 orders of magnitude faster than the PCET rate. The calculations reproduce these experimentally observed trends. The pH dependence for the PCET reaction arises from the decrease in the reaction free energies with pH. The calculations indicate that the larger rate for single ET arises from a combination of factors, including the smaller solvent reorganization energy for ET and the averaging of the coupling for PCET over the reactant and product hydrogen vibrational wave functions (i.e., a vibrational overlap factor in the PCET rate expression). The temperature dependence of the rates, the solvent reorganization energies, and the deuterium kinetic isotope effects determined from the calculations are also consistent with the experimental results.
منابع مشابه
Regulating proton-coupled electron transfer for efficient water splitting by manganese oxides at neutral pH
Manganese oxides have been extensively investigated as model systems for the oxygen-evolving complex of photosystem II. However, most bioinspired catalysts are inefficient at neutral pH and functional similarity to the oxygen-evolving complex has been rarely achieved with manganese. Here we report the regulation of proton-coupled electron transfer involved in water oxidation by manganese oxides...
متن کاملMimicking the electron transfer chain in photosystem II with a molecular triad thermodynamically capable of water oxidation.
In the photosynthetic photosystem II, electrons are transferred from the manganese-containing oxygen evolving complex (OEC) to the oxidized primary electron-donor chlorophyll P680(•+) by a proton-coupled electron transfer process involving a tyrosine-histidine pair. Proton transfer from the tyrosine phenolic group to a histidine nitrogen positions the redox potential of the tyrosine between tho...
متن کاملProton and hydrogen currents in photosynthetic water oxidation.
The photosynthetic processes that lead to water oxidation involve an evolution in time from photon dynamics to photochemically-driven electron transfer to coupled electron/proton chemistry. The redox-active tyrosine, Y(Z), is the component at which the proton currents necessary for water oxidation are switched on. The thermodynamic and kinetic implications of this function for Y(Z) are discusse...
متن کاملPhotosysem II: where does the light-induced voltage come from?
Photosystem II (PS II) is a biological energy transducer. The enzyme catalyses the light-driven oxidation of water and reduction of plastoquinone. The aim of this work was to review the mechanisms of electrical events in PS II. The major contribution to the total photoelectric response is due to the charge-separation between the primary chlorophyll donor P680 and quinone acceptor QA accompanied...
متن کاملA proposal for water oxidation in photosystem II
There has been much speculation concerning the mechanism for water oxidation by Photosystem 11. Based on recent work on the biophysics of Photosystem I1 and our own work on the reactivity of synthetic manganese complexes, we propose a chemically reasonable mechanistic model for the water oxidation function of this enzyme. An essential feature of the model is the nucleophilic attack by calcium-l...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Journal of the American Chemical Society
دوره 125 34 شماره
صفحات -
تاریخ انتشار 2003